Friday, August 22, 2014

संस्कृत छंदों और संगीत के गणित से फील्ड्स मेडल तक



संस्कृत के छंदो, तबला और अंको से खेलने वाले विलक्षण गणितज्ञ मंजुल भार्गव को इस वर्ष गणित के सर्वोच्च पुरस्कार फील्ड्स मेडल से सम्मानित किया गया. फील्ड्स मेडल कमिटी ने कहा - "अद्भुत रूप से रचनात्मक गणितज्ञ मंजुल भार्गव के कार्य ने संख्या सिद्धान्त पर गहरा प्रभाव छोडा हैं।  गणित के कालातीत खूबसूरत सवालों में गहरी रुचि रखने वाले भार्गव ने ऐसे सवालो को हल करते हुए गहरी समझ प्रदान करने वाले सहज और सशक्त तरीकों की खोज की है."


पहले बात अंक सिद्धांत (नंबर थियरी) और कालातीत खूबसूरत सवालों की - गणित में अंक-सिद्धांत पूर्ण अंको का अध्ययन है जैसे  १,२, ३, -२०, ५०००, ०, ५० इत्यादि. पूर्णांकों के गुण, उनका वर्गीकरण (सम, विषम, रूढ़ संख्यायें इत्यादि. ) तथा उनके आपसी रिश्तों का अध्ययन. उस ज्यामिति का अध्ययन जिसके कोने पूर्णांकों से बने हो. पूर्ण अंको में क्रम-रूप-पैटर्न ढुंढना. ऐसे समीकरणो का अध्ययन जिनके हल पूर्ण अंक होते हैं. इत्यादि। पूर्णांकों का अध्ययन करते हुए कई नए सवाल और जवाब निकलते जाने से बनने वाला गणित.  गणित का वो रूप जो मानव ने सबसे पहले सीखा और हम आज भी बचपन में सबसे पहले गिनती सीखते हैं. आज ये अपने आपमें गणित की एक पूर्ण शाखा है - इतनी महत्त्वपूर्ण की इसे गणित की रानी भी कहते हैं. कालातीत खूबसूरत सवाल यूँ होते है कि जो किसी कम पढ़े लिखे व्यक्ति को भी आसानी से समझाए जा सकते हैं. पर उन्हें हल करना महारथी गणितज्ञों के बस का भी नहीं होता ! उनको हल करते हुए खूबसूरत गणित की परतें खुलती जाती हैं. जैसे गणित का सबसे प्रसिद्ध और एक लम्बे समय तक कठिनतम समझा जाने वाला सेलेब्रिटी सवाल - फ़र्मैट का आखिरी प्रमेय.


मंजुल भार्गव पिंगल-हेमचन्द्र-ब्रह्मगुप्त-नारायण पंडित-फ़र्मैट-गॉस-रामानुजन-एंड्रू वाइल्स घराने के गणितज्ञ हैं ! वैसे ये घराना मैंने अभी-अभी बनाया है. दरअसल ये वो महान गणितज्ञ हैं जिनकी विरासत को मंजुल भार्गव ने आगे बढ़ाया है. उनके काम और उनकी असाधारण उपलब्धियां उनको इन महान गणितज्ञों की श्रेणी में ला खड़ा करते हैं. गणित के अलावा भी मंजुल भार्गव का व्यक्तित्व बहुत रोचक  है. कनाडा में जन्म, अमेरिका में पले-बढे, जयपुर में अपने दादाजी के सानिद्ध्य में संस्कृत-संगीत और प्राचीन भारतीय गणित का अध्ययन, माँ से अनौपचारिक रुप से औपचारिक गणित की शिक्षा।  नियमित पढाई छोड़ कर बीच बीच में या तो वो अपनी माँ की गणित की कक्षा (जो गणित की एक प्रोफ़ेसर हैं) में जाकर बैठते या भारत में अपने दादाजी के साथ (संस्कृत के प्रोफ़ेसर) संस्कृत और संगीत (तबला) सीख रहे होते. बाद में उन्होंने विख्यात ज़ाकिर हुसैन से भी संगीत की शिक्षा ली.


प्राचीन भारत में गणित की समृद्ध परम्परा रही है. मंजुल भार्गव ने गणित उसी परंपरा से सीखन शुरू किया. संस्कृत के छंदों में भी गणित का इस्तेमाल होता है. पिंगल ने सर्वप्रथम छंदशास्त्र में (लगभग ४०० ई पू, कई इतिहासकारो के अनुसार पिंगल प्रसिद्ध व्याकरणाचार्य महर्षि पाणिनि के भाई थे) गुरु (s) और लघु (।) वर्णो का जिक्र किया। उन्होंने किसी भी छंद को द्विघाती (बाइनरी) में लिखने के साथ वर्णो की संख्या और क्रम का भी वर्णन किया. संभवतः ‘कॉम्बिनेटोरिक्स’ और ‘बाइनरी’ का विश्व में कहीं भी पहला लिखित रूप यही है. लघु को एक तथा गुरु को दो वर्ण माने तो एक निश्चित वर्ण समूह से कितने छंद संभव है? इस सवाल के हल ने ही विख्यात फिबोनाची क्रम को जन्म दिया ! पिंगल के मेरु प्रस्तर (आज का पास्कल ट्रेंगल) और  मात्रा-मेरु में फिबोनाची के प्रारंभिक विचार थे. फिबोनाची क्रम का वर्णन विरहांक (६००-८०० ई), गोपाल (११३५ ई के पहले) तथा हेमचन्द्र (११५० के पहले) ने किया। जैन विद्वान हेमचन्द्र, जिन्हे कलिकाल सर्वज्ञ भी कहते हैं, ने गोपाल की व्याख्या को समृद्ध कर आज के फिबोनाची क्रम का स्पष्ट वर्णन किया। कालांतर में नारायण पंडित (१३५६ ई) ने गणित कौमुदी में सामासिक-पंक्ति का जिक्र किया। फिबोनाची क्रम सामासिक पंक्ति का एक विशेष रूप भर है. फिबोनाची ने इस क्रम का जिक्र १२०२ ई में किया. फिबोनाची क्रम को कई गणितज्ञ गोपाल-हेमचन्द्र नम्बर्स के नाम से जानते हैं. मंजुल भार्गव के मुंह से फिबोनाची क्रम की जगह हेमचन्द्र नम्बर्स सुनना सुखद लगा. फिबोनाची क्रम और सौंदर्य अनुपात संभवतः प्रकृति में पाये जाने वाले गणित की खूबसूरती के सबसे बड़े उदाहरण हैं. गणित से मंजुल भार्गव का पहला परिचय इन संस्कृत छन्दो और शास्त्रीय संगीत (तबला) के धुनों से ही हुआ.


हावर्ड में स्नातक की पढाई करते हुए भार्गव ने गॉस की किताब Disquisitiones Arithmeticae पढ़ा, महानतम गणितज्ञ गॉस ने ये किताब 21 साल के उम्र में लिख डाला था। ये पुस्तक संख्या सिद्धान्त के गीता की तरह है। जैसे हर कोई कह देता है “गीता में लिखा है” वैसे ही हर अंक शास्त्री के लिए ये किताब है… पर गीता की ही तरह बहुत कम ने इसे अक्षरशः पढ़ा होता है। इस किताब में गॉस ने अनगिनत सिद्धांतों के अलावा अंको के एक ख़ास रूप 'बाइनरि क्वाड्रेटिक फॉर्म्स' की चर्चा की थी। वो अंक जो एक खास नियम का पालन करते हैं।  फिर उन्होने इन ख़ास अंको को मिलाकर इसी परिवार के  नए अंक बनाने का एक संयोजन नियम भी दिया।  ये संयोजन नियम एक तरह से बीजगणितीय संख्या सिद्धान्त के मुख्य उपकरण की तरह हैं। पर गॉस ने 20 पन्नों में इसे बड़ी कठिन गणितीय भाषा में समझाया था। मंजुल भार्गव ने इन अंको और नियमों को समझने का एक बिलकुल नया क्रांतिकारी तरीका दिया। अंको को रुबिक क्यूब के कोनो से सम्बंधित कर उन्होंने एक नया तरीका ईजाद किया। साथ ही अपने इस नए तरीके से उन्होने कई नए संयोजन नियम भी बनाए और द्विघाती (क्वाड्रेटिक) की जगह कई उच्चतर पदीय अंको के लिए नियम भी दिए. उन्होंने कुल 13 नए संयोजन नियमो की खोज की। गॉस के १८०१ में लिखे संयोजन नियम के बाद दो सौ वर्षों तक इससे पहले किसी ने नहीं सोचा था कि उच्चतर पदीय रूप वाले अंको के लिए ऐसे नियम हो भी सकते हैं! अंक सिद्धांत के लिए मंजुल भार्गव के इस नए तरीके और शोध ने जैसे एक नए क्षेत्र को ही जन्म दे दिया.


मंजुल भार्गव ने हाइपर एलिप्टिक कर्व पर भी काम किया है। आसान भाषा में समझना चाहें तो ये ज्यामितीय अध्ययन है इस बात का कि.... किसी गणितीय संगणना से एक वर्ग संख्या आएगी या नहीं !  ऐसे कर्व्स के एक खास वर्ग को एलिप्टिक कर्व्स कहते हैं जिनका इस्तेमाल अब तक के सबसे प्रसिद्ध गणितीय सवाल फ़र्मैट के लास्ट थिओरम को हल करने में भी हुआ था। ये भी एक सुखद संयोग है कि उस ऐतिहासिक सवाल को हल करने वाले प्रिंस्टन विश्विद्यालय के ही एंड्रू वाइल्स के दिशा निर्देशन में मंजुल भार्गव ने पीएचडी की. संसार के सर्वश्रेष्ठ अंक सिद्धांत के विशेषज्ञ संभवतः अभी प्रिंस्टन विश्वविद्यालय में ही हैं. एक प्रसिद्द और अत्यंत कठिन सवाल है कि एलिप्टिक कर्व्स कितने वास्तविक (रेशनल) अंको से होकर गुजरते हैं. एक, दो, तीन,.... अनंत या एक भी नहीं ! मंजुल भार्गव ने फिर एक बार कर्व्स और उनके वास्तविक बिन्दुओं में सम्बन्ध के नए तरीको से ये समझना आसान किया कि ऐसे कर्व पर कितने रेशनल पॉइंट होंगे।


एक और प्रसिद्ध सवाल जो महान गणितज्ञ फ़र्मैट के जमाने से ही चला आ रहा था वो ये कि क्या कोई ऐसा द्विघाती रूप  हो सकता है जिस रूप में सारी संख्याएँ लिखी जा सके? जैसे क^२ + ख^२ अर्थात दो संखाओं के वर्ग के योग का रूप ऐसा रूप नहीं है जिसमें सारे अंक लिखे जा सके। लैंगरेंज ने पहली बार बताया कि हर अंक को चार संख्याओं के वर्ग के योग के रूप में लिखा जा सकता है (क^२+ख^२+ग^२+घ^२). इसके लगभग सौ वर्षों बाद रामानुजन ने चार अंको के इस्तेमाल से ऐसे ५४ रूप दे दिये जिनमें सारी संख्याओं को लिखा जा सकता है. फिर ये सवाल आया कि ऐसे कितने रूप (फॉर्म्स) हो सकते हैं? १९९० के दशक में सवाल बदल कर ये हो गया कि क्या ऐसा कोई अंक है जिससे छोटी हर संख्या को अगर एक दिए गए रूप में लिखा जा सका तो फिर उस रूप में हर संख्या को ही लिखा जाना संभव है. फिर कुछ गणितज्ञों के प्रयास से ये अनुमान (कंजेक्चर) लगा कि शायद ये संख्या २९० है. मंजुल भार्गव ने अंततः ये साबित किया कि .... २९० और उससे छोटी २८ ऐसी संख्याएँ है कि अगर किसी द्विघाती रूप में इन २९ अंको को लिखा जा सकता है तो वो अंको का वैश्विक रूप हुआ अर्थात उस रूप में हर संख्या लिखी जा सकती है।


संक्षेप में कहना हो तो - मंजुल भार्गव ने बीजगणितीय अंक सिद्धांत की दुनिया के उन चीजों को गिनने के तरीके दिए हैं जो इससे पहले अगम्य थे ! और इन तरीकों ने गणितज्ञों के लिए नयी दुनिया के दरवाजे खोले जहाँ अब कई गणितज्ञ भ्रमण कर नित नयी चीजें ढूंढ पा रहे हैं.


भार्गव एक शुद्ध गणितज्ञ हैं. इस घराने के गणितज्ञ गणित सिर्फ उसकी  खूबसूरती और अपनी समझ, अपने सुकून के लिए पढ़ते हैं उन्हें गणित का कहीं इस्तेमाल नहीं करना होता। बल्कि जब उनके गणित का कहीं इस्तेमाल होने लगता है तो उन्हें आश्चर्य ही होता है. पर अक्सर ऐसा गणित उपयोग और विज्ञान की तरफ अपना रास्ता ढूंढ ही लेता है. जैसे रूढ़ संख्याओं का भला क्या उपयोग हो सकता है ?  एक साधारण उदाहरण लेते हैं.... किसी अंक का गुणनखण्ड हम सबने निकाला होगा। दो संख्याओं का गुणनफल निकालना हो तो वो बहुत आसान  होता है पर गुणनखण्ड निकलना उससे थोड़ा कठिन. ठीक यही कम्प्यूटर के लिए भी होता है. कितनी भी बड़ी रूढ़ संख्याएं हो उनका गुणनफल कम्यूटर कुछ पलों में आसानी से निकाल सकता है. पर अगर इसी सवाल का उल्टा करने को कहा जाय और अगर बहुत बड़ी संख्या हो तो कम्प्यूटर भी अरबों खरबों साल लगा दे ! गणितज्ञों को ऐसे सवालों का हल ढूंढने में आनंद आता है. पर खूबसूरती ये है कि सिर्फ आनंद और खूबसूरती के लिए हल किये जाने वाले ऐसे सवालों का इस्तेमाल हर जगह होने लगता है.… जैसे ऐसे सवालों का इस्तेमाल क्रेडिट कार्ड से किये जाने वाले भुगतान में होता है. सुचना सुरक्षित करने में (एन्क्रिप्शन)… आपके क्रेडिट कार्ड की सूचना से भुगतान बहुत आसान पर भुगतान की सुचना से क्रेडिट कार्ड की जानकारी निकलना लगभग असंभव !


मंजुल भार्गव रामानुजन की तरह उन विलक्षण गणितज्ञो की श्रेणी में आते हैं जिनके पास अद्भुत अंतर्दृष्टि (इंट्यूशन) होती है. जो गणित को एक उच्चतर स्तर पर लेकर जाते हैं. जिनके लिए गणित सत्य और खूबसूरती की खोज है. गणित के कठिनतम सवालों को देखने का जिनके पास एक जादुई नजरिया होता है. उनके लिए गणित के किसी कठिन अबूझ से सवाल को हल करने का अर्थ होता है सवाल को बिलकुल ही एक नए नजरिये से देखना। इस नजर से देखा भी जा सकता है पहले किसी ने सोचा भी नही होता. पर सुनने के बाद लगे यही तो असली तरीका है सोचने का - विशिष्ट पर सरल ! मंजुल भार्गव की सोच इतने अद्वितीय रूप से विशिष्ट होती है कि कोई भी गणितज्ञ पढ़ते हुए बता दे कि ऐसा मंजुल भार्गव ही सोच सकते हैं ! जैसे एक कलाकार की कला पहचान होती है, एक कवि की कविता और एक संगीतज्ञ का संगीत।


मंजुल भार्गव गणित को विज्ञान से अधिक कला मानते हैं. उनके अनुसार वो गणित में उन्हीं कारणों से  खोये रहते हैं जिन कारणों से संगीत और कविता में. उनके लिए अंक जैसे एक पंक्ति में खड़े हो जाते दीखते हों, अंतरिक्ष में, वायुमंडल में, रुबिक क्यूब के कोनों पर, संस्कृत अक्षरों में (वो संस्कृत के व्यंजनों  को उच्चारण के आधार पर बना 5x5 का मैट्रिक्स देखते हैं), कविताओं में, तबले की धुन में, कला में... फिर उनसे निकले विचार आलोकित करने वाले होते है ! उनके लिए गणित मानवता और ब्रह्माण्ड के सत्य को अभिव्यक्त करने का तरीका है. वो प्रिंसटन विश्वविद्यालय में संगीत का गणित, संस्कृत छंदों का गणित और जादुई कलाकारियों के गणित का एक कोर्स पढ़ाते हैं जिसमें वो तबला भी बजाते हैं. अगर इस तरीके से गणित पढ़ाया जाने लगे तो भला किसे गणित में आनंद नहीं आएगा। वो कहते हैं - “जब मैं संस्कृत की कविताएँ पढ़ रहा था तब मुझे नहीं पता था कि मैं उनमें मुख्य धारा का गणित भी पढ़ रहा हूँ। बाद में गणित पढ़ते हुए उन्हें फिर से एक नए नाम और नए तरीके से पढ़ना मुझे आह्लादित करता। ऐसी चीजों में मुझे आनंद आता है जब विभिन्न विषयों की अनपेक्षित एकात्मकता देखने को मिलती है!”.


मंजुल भार्गव एक अद्भुत, समृद्ध और विलक्षण परंपरा के वाहक हैं... कामना है आने वाले समय में मंजुल भार्गव ऐसे ही गणित के अद्भुत सिद्धांत देते रहे !

~Abhishek Ojha~
---


इस ब्लॉग पर कई पोस्ट हैं जो इस पोस्ट की बातों से जुडी हुई हैं  - पुरानी पोस्टें ज्यादा जुडी हुई है :)
गणित की खूबसूरती - http://baatein.aojha.in/search/label/Beauty%20in%20Mathematics
सौंदर्य अनुपात: http://baatein.aojha.in/search/label/Golden%20Ratio
फ़र्मैट का आखिरी प्रमेय: http://baatein.aojha.in/search/label/Fermat%27s%20Last%20Theorem

12 comments:

  1. Very interesting post on a very interesting subject about an interesting person.
    Thanks

    ReplyDelete
  2. जय हो! क्या यह आलेख अङ्ग्रेज़ी में मिल सकता है बंधु?

    ReplyDelete
  3. जय हो, अभिषेक ओझा जागृत हुये....

    ReplyDelete
  4. great n wonderful, very very deep knowledge you have.
    Dinbhar pdhaiye hola ka ye ojha ji.

    ReplyDelete
  5. हाल ही में मेरे पतिदेव पोतियों के लिये Tell me why की एक सीरीज लाये थे। उसके Famous Mathematician of the world में Thale से लेकर मंजुल भार्गव तक की जानकारी थी। आज आपका ये विस्तृत लेख पढ कर बहुत अच्छा लगा।

    ReplyDelete
  6. हाल ही में मेरे पतिदेव पोतियों के लिये Tell me why की एक सीरीज लाये थे। उसके Famous Mathematician of the world में Thale से लेकर मंजुल भार्गव तक की जानकारी थी। आज आपका ये विस्तृत लेख पढ कर बहुत अच्छा लगा।

    ReplyDelete
  7. बेहतरीन
    बहुत खूब!

    HindiPanda

    ReplyDelete
  8. पिता की मौत के बाद मां ने मेहनत करके बेटी को पाला, 21 साल उम्र में बन गई डिप्टी कलेक्टर http://news24india.co/?p=1548

    ReplyDelete
  9. http://news24india.co/1548/

    ReplyDelete
  10. पिता की मौत के बाद मां ने मेहनत करके बेटी को पाला, 21 साल उम्र में बन गई डिप्टी कलेक्टर http://news24india.co/?p=1548

    ReplyDelete